Writer Identification and Retrieval Using a Convolutional Neural Network

نویسندگان

  • Stefan Fiel
  • Robert Sablatnig
چکیده

In this paper a novel method for writer identification and retrieval is presented. Writer identification is the process of finding the author of a specific document by comparing it to documents in a database where writers are known, whereas retrieval is the task of finding similar handwritings or all documents of a specific writer. The method presented is using Convolutional Neural Networks (CNN) to generate a feature vector for each writer, which is then compared with the precalculated feature vectors stored in the database. For the generation of this vector the CNN is trained on a database with known writers and after training the classification layer is cut off and the output of the second last fully connected layer is used as feature vector. For the identification a nearest neighbor classification is used. The evaluation is performed on the ICDAR2013 Competition on Writer Identification, ICDAR 2011 Writer Identification Contest, and the CVL-Database datasets. Experiments show, that this novel approach achieves better results to previously presented writer identification approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Character-level Chinese Writer Identification using Path Signature Feature, DropStroke and Deep CNN

Most existing online writer-identification systems require that the text content is supplied in advance and rely on separately designed features and classifiers. The identifications are based on lines of text, entire paragraphs, or entire documents; however, these materials are not always available. In this paper, we introduce a path-signature feature to an end-to-end text-independent writer-id...

متن کامل

Offline Writer Identification Using Convolutional Neural Network Activation Features

Convolutional neural networks (CNNs) have recently become the state-of-the-art tool for large-scale image classification. In this work we propose the use of activation features from CNNs as local descriptors for writer identification. A global descriptor is then formed by means of GMM supervector encoding, which is further improved by normalization with the KL-Kernel. We evaluate our method on ...

متن کامل

Encoding CNN Activations for Writer Recognition

The encoding of local features is an essential part for writer identification and writer retrieval. While CNN activations have already been used as local features in related works, the encoding of these features has attracted little attention so far. In this work, we compare the established VLAD encoding with triangulation embedding. We further investigate generalized max pooling as an alternat...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015